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1 Theoretical Background

In this section we first go over the fundamentals on explainable artificial intelligence.
We then proceed with a review of sensitivity analysis methods and the discussion of
different sampling techniques. Finally, for potential representation learning frame-
works, we examine the existing literature on explainable artificial intelligence (XAI)
methodologies for the clustering process. By following this structure, we provide a
comprehensive overview of the research landscape and establish a strong mathematical
foundation for the conjunction of sensitivity analysis, explainable ai and representation
learning.

1.1 Fundamentals of XAI

1.1.1 Defining Explainability vs. Interpretability

It is essential to develop a precise understanding of the ideas of interpretability and
explainability in order to lay a strong foundation. Often, researchers use these words
interchangeably. Although no clear separation is defined with mathematical rigor,
notable efforts have been made to distinguish these two concepts [29] [2]. A popular
definition of interpretability by Doshi Velez & Kim states that "it is the ability to
explain or present in humanly understandable terms" [29] [27]. In his definition,
Miller describes interpretability as "the degree to which a human can understand the
cause of a decision" [33]. Linardatos et al., in their overview of XAI, after going over
major definitions, conclude that interpretability is mostly about the intuition behind
the outputs of the model, such that the better the interpretability, the easier it is to
identify the cause-effect relationships between the input and outputs [29]. According
to Linardatos et al. and Doshi Velez & Kim, explainability is a tighter concept, and
it is linked to internal mechanisms of the ML system [29][12]. Thus, making a model
explainable means making the algorithm’s inner processes and underlying logic more
transparent to humans. Inspired by these, Gilpin et al. concluded that the explainability
of the model is critical for developing transparent methods that can be used in the
presence of ethical concerns [16]. Hence, we focus on the term explainability throughout
the work.
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1 Theoretical Background

1.1.2 Importance

Consider the question: "Why don’t we just accept the model and ignore its reasoning
if a machine learning model performs well?". Doshi-Velez et al. answer: "The issue
is that most real-world tasks cannot be fully described by a single statistic, such as
classification accuracy." [12][34] Digging further into the importance of explainability,
we can see that there is a trade-off to be made when using predictive modeling: Do
we simply want to be informed of the predictions? Alternatively, do we want to
understand the reasoning behind the prediction and risk losing (not even always) some
predictive accuracy in exchange? There might be occasions where it is sufficient to
know whether the predictive performance of the model is good enough without caring
much about why a decision was made. This may happen because of the use cases
of a model generally comprised of low-risk situations, where a mistake will not have
serious repercussions (like a movie recommender system) [34]. One other reason might
be that the technique has already been thoroughly researched and assessed (like optical
character recognition), and no further explainability power is desired. However, there
might be other circumstances, presumably critical in nature, where understanding the
"why" can aid in our understanding of the issue, the data, and the possible causes of a
model’s failure [34]. The critical point that needs to be highlighted is that debugging
machine learning models is most effective and efficient when the models have been
explained to us.

1.1.3 Taxonomy

There are several essential notions as per the potential approaches to model explainabil-
ity. As mentioned before, the innate nature of XAI is to try to explain AI models, which
are usually classified [34] as white-box, sometimes called glass-box, where it is possible
to intuitively reason about the inner processes, and black-box approaches, whose name
speaks for itself—little to no clue for an explanation. This work primarily focuses on
the latter version.

Moreover, XAI methods can be Post-hoc or Intrinsic. The classification of machine
learning approaches as post-hoc or intrinsic is determined based on how they address
explainability. Intrinsic approaches involve constraining the complexity of the machine
learning model during training, while post-hoc methods analyze an already trained
model to achieve explainability [34]. Short decision trees and sparse linear models
are examples of machine learning models that are intrinsically explainable because
of their straightforward form. On the other hand, post-hoc methods take the trained
model as is and employ additional techniques to achieve explainability. An example of
a post-hoc interpretation method is the importance of permutation features [34].
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Another differentiation between XAI methods is being model-specific or model-agnostic.
Model-specific interpretation tools are only available for a subset of model classes. As
an elementary example, since the interpretation of inherently interpretable (explainable)
models is always model-specific, the interpretation (explanation) of the weights of a
linear model is model-specific. Model-specific methods are those that are only effective
for the explanation of, say, neural networks. An important note is that model-agnostic
methods are employed post-hoc (after the model has been trained) and can be used
in any machine-learning model of the given context [34]. These agnostic techniques
typically operate by examining feature input and output pairs. By definition, these
techniques cannot access model internals like weights or structural data.

Explaining the model can be projected to the concept of sensitivity analysis in certain
contexts. The next part briefly discusses the motivation for relying our study on
sensitivity analysis.

1.2 Sensitivity Analysis & Explainable AI

Numerous descriptions of sensitivity analysis agree on a common definition; sensitivity
analysis is the study of how different sources of uncertainty in an input can be separated
and assigned to the output of a mathematical model or system [46] [48]. As Stein
et al. mention in their technical reviews, sensitivity analysis techniques are essential
for better comprehending the impact and uncertainty of features or parameters in
machine learning models, simulators, and practical implementations [61]. Sensitivity
analysis can be seen as a model-agnostic approach in the context of explainable AI
(XAI) because it can provide extensive insights about machine learning models and
applications without any specific information about the model. In fact, sensitivity
analysis plays an important role in XAI as it can answer some of these questions
without being dependent on a certain machine learning model or even a sampling
strategy [61]. Especially when the number of model inputs is large, recognizing the
factors on which to focus resources in data collection and data-driven modeling efforts
becomes crucial. The literature contains a number of XAI techniques. Saliency Maps
[55], adversarial examples [63], GradCAM [53], and other model-specific XAI techniques
are a few examples. The core ideas of Shap [31], LIME [44], and some other methods,
which switch sets of inputs on and off to determine which traits contribute most to a
particular prediction, are similar to those of the far more well-known GSA methods[61].
Sensitivity analysis is used in many real-world applications, including but not limited
to understanding the engine models [45][19], understanding the vehicle dynamics [71],
and understanding the lifecycle of combustion engine cars [17].
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1.3 Sensitiviy Analysis

1.3.1 Basic Definitions and concepts

Aims of Sensitivity Analysis

Understanding what Sensitivity Analysis is capable of achieving is crucial before
moving further. The following objectives are widely identified in the literature:

• Ranking:

Sorting the input features according to how they affect the variability of model
output. The higher-ranked features are, therefore, the focus of experimental or
numerical estimation. Such ranking can be rooted in several formulations (which
will be discussed in upcoming parts), for example, because the output uncertainty
(variance) is reduced the most when these input values are removed (fixed).

• Screening:

Screening determines which model inputs are indistinguishable, i.e., those with
little to no impact on the variability of mode output. One use case would be, for
instance, the dimensionality reduction of the problem by putting these inputs at
fixed values.

Global vs. Local Sensitivity Analysis

Based on the input space exploration depth, Sensitivity Analysis approaches can
be divided into different categories. Local techniques concentrate on analyzing the
sensitivity of model inputs at a particular location. Global techniques, on the other
hand, collect sensitivities at numerous places in the input space before calculating
some measure of the average of these sensitivities. This averaged value then shows the
input’s influence on the output’s uncertainty [43]. Local techniques are extensively used
because they are simple and computationally efficient, yet, they are most beneficial for
linear models. Nonlinear models may give incorrect conclusions when extrapolating
sensitivity [46]. Global techniques, on the other hand, are effective for nonlinear models
as they can expose interactions between inputs.

One-at-a-time and Many-at-a-time SA

Sensitivity analysis techniques imply model (re)evaluations using various sets of input
data. One way to categorize these techniques is to simply count the number of input
values that change for each subsequent model simulation.
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• One-at-a-time (OAT) methods: Altering one feature per run

• Many-at-a-time (MAT) methods: Altering multiple features per run.

The majority of one-at-a-time algorithms begin with a basic set of input values where
it is known that the model will converge [43]. Hence, altering the value of one input
feature lowers the likelihood that the model evaluation will be unsuccessful for any
reason, like instability or numerical mistake. Beyond their resistance to convergence
problems, another benefit of OAT methods is that if the model evaluation of a set of
baseline values differs from that when one of the inputs is changed, we can attribute
the cause of the difference to that particular input because it must have some impact
on the output, at least at that particular location in input space. However, OAT
approaches have some significant drawbacks, most notably a challenge in the analysis
of nonlinear models [49][43]. While local methods can only be OAT-based, global
sensitivity techniques can be OAT or MAT-based. Although MAT is computationally
more expensive and more likely to evaluate the model at input values where it is
unstable, they are recommended for the analysis of nonlinear functions since they cover
a larger amount of the factor space [46][49][43].

1.3.2 Review and Mathematical Formulation of relevant Sensitivity Analysis
Methods

Variance based Sensitivity Analysis

The goal of the variance-based sensitivity analysis methods is to estimate the portion of
model variance caused by each input feature and how that feature interact with every
other input feature. In the following two sections, we mention two of such approaches,
which, with proper adjustment and tweaks, are used in our methodologies.

Sobol Sensitivity Analysis

We start by mentioning Sobol method [58][59], first proposed by Ilya Sobol in 1993.
It is a variance decomposition method, such that the variance of the model’s output
is being decomposed into summands of variances of the input feature. Thus, Sobol
Sensitivity Analysis (SSA) allows one to observe the contribution of each input feature
for the generation of output variance. The sensitivity indices induced by Sobol method
can be represented via conditional probability formulations [22][36][50]. The direct
involvement of each input feature to the output variance is called its main effect on
output. Main effects of features are also alternatively called first-order sensitivity indices
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of input features. Equation 1.1 demonstrates the calculation of such first-order indices:

Si =
VarXi(EX∼i(Y|Xi))

Var(Y)
(1.1)

Here Xi means ith input feature, whereas X∼i means everything but the ith input
feature. E(·) and Var(·) represent expected value and variance, respectively. For the
expected value operator, the mean of Y is taken over all possible values of X∼i (which
means keeping the ith feature fixed). Then the variance of these expected values is
computed over all possible values of for Xi. One way to interpret the numerator
(VarXi(EX∼i(Y|Xi))) is to consider it as the expected reduction in model variance that
would be obtained if Xi was to be fixed [43]. Moreover, it is quite usual for the systems
to have interactions among the input features (e.g. input X2 is especially important
when X5 exhibits certain behaviors), which might also contribute to variance generation
in the model output. These total contributions are called total-sensitivity indices of the
inputs [18], and computed as in Equation 1.2:

STi =
EX∼i(VarXi(Y|Xi))

Var(Y)
(1.2)

Here numerator (EX∼i(VarXi(Y|Xi))) is the expected variance that would remain after
fixing every variable except Xi. Thus, if the total sensitivity index for kth feature is
computed to be 0, this means the model’s output shows no variation to kth feature -
feature k is then noninfluential.
We now proceed with more rigorous representation of Sobol SA.

Rigorous representation of Sobol Indices

Let z = (z1, z2, . . . , zn−1, zn) be the input features of a model. Considering that each
feature’s value has its own interval to vary, to make things simpler, we can normalize
the intervals for all features and make them all live in [0, 1]. For simplicity, then
assume that all features are distributed uniformly in [0,1], whereas the features are
independent of one another. Call the model output a function of z, f (z). In the context
of probabilistic interpretation of the parameters, f (z) is a random variable, with a mean
f0 (Equation 1.3) and variance D (Equation 1.4).

f0 =
∫

f (z)dz (1.3)

D =
∫

f (z)2dz − f 2
0 (1.4)

In above equations all integrals are multiple integrals with limits [0, 1] for every
dimension, as per our previous definitions. The Sobol method relies on breaking down
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1.4 into individual contributions from single features, as well as combined effects from
pairs, from triples and so on. To do so, first we break down f (z) as:

f (z) = f0 +
n

∑
i=1

fi(zi) +
n

∑
i=1

s

∑
i ̸=j

fij(zi, zj) + · · ·+ f1...n(z1, z2, . . . , zn) (1.5)

The components of the breakdown are formulated as:

fij(zi, zj) =
∫

f (z) ∏
k ̸=i,j

dzk − f0 (1.6)

∫
fi1,...,in(zi1, . . . , zin)dzk = 0 (1.7)

and so on.
Next, we obtain ANOVA (Analysis of Variance) representation for the model output
function, f (z), which is based on the condition given as:∫

fi1,...,in(zi1, . . . , zin) dzk = 0 for k = i1, . . . , in. (1.8)

As a result of this property, squaring both sides of 1.5 and integrating yields:

D =
k

∑
i=1

Di + ∑
i<j

Dij + ∑
i<j<l

Dijl + · · ·+ D1,2,...,k (1.9)

where D1,...,n =
∫

f 2
1,...,n(z1, z2 . . . zn)dz1 . . . dzn is the variance of f1,...,n(z1, z2 . . . zn), the

partial variance corresponding to the given subset of features. Finally, the Sobol Indices
for the given subset of features are computed as:

S1,...,n =
D1,...,n

D
(1.10)

Mapping to the previous formulation in 1.1, First-Order Sobol index of ith feature is
given as:

Si =
Di

D
(1.11)

This formulation can be extended to Second Order Index of ith and jth features,
representing the the contribution of the interaction between them: Sij =

Dij
D . Eventually,

one can figure out the Total order index for the ith feature, representing the overall
contribution of this feature including its main effect and all interactions with other
features. Calculation of Total Order Indices (equivalent to 1.2) is given as:

STi = Si + ∑
j ̸=i

Sij + · · ·+ S1...n (1.12)
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It is worthwhile to note that, thanks to such formulation of the so called total sensitivity
index, Sobol method can escape from the curse of dimensionality [47].

Key Steps for Conducting Sobol Sensitivity Analysis

The main guideline for performing Sobol analysis consists of preparing parameter sets
and their ranges, sample generation, model simulations, the computation of Sobol
indices based on the simulation results, and the analysis of the results. Depending on
the outcomes and evaluations, we rollback to the pre-sobol step to redefine the setup
and start over. See Figure 1.1 for the diagram of the workflow visualized. For the step
of parameter set generation, we use the notion of Sobol Sequences and their Saltelli
extension. We mention these and more sampling strategies in greater detail in 1.4.

We can now sum up the characteristics of the Sobol method. To begin with, no
assumptions are being made between the inputs and outputs; instead, sole observation
of the model behavior is being reported. Additionally, the reported indices comprise
all the input features and all possible interactions, given the individual ranges. How-
ever, there are some handicaps as well. Like the other variance-based methods, the
algorithm’s biggest challenge is the high computational demand [43]. Another critical
aspect of the algorithm is that the input features of the model should be independent
to achieve the desired results effectively [4][70][43][59]. For this reason, it is essential to
check for the potential high correlations of the input features.

Random Balanced Design Fourier Amplitude Sensitivity Testing (RBD-FAST)

In fact, several numerical techniques have been proposed in the literature ([59]; [47];
[62]; [46]) to evaluate the variance-based sensitivity indices of specific scalar inputs.
The frequency-based approach, RBD-FAST, in particular offers a reliable and accurate
estimation of all first-order sensitivity indices (main effects) with just one sample set of
N simulations. In this section, we outline a technique for quickly, inexpensively, and
precisely determining the RBD-FAST sensitivity indices, ψi. RBD-FAST integrates two
concepts: the Fourier Amplitude Sensitivity Test (FAST) ([47]) and random balance
experimental designs [51].

Fourier Amplitude Sensitivity Test (FAST)

We first start with the formulation of the classical baseline algorithm, FAST. Consider a
black-box model f (x̂), outputting y, where x̂ is a input vector of d features: (x1, . . . , xd).
Without loss of generality, assume that the domain input features is the unit hypercube:

Cd = {x | 0 ≤ xi ≤ 1; i = 1, . . . , d} (1.13)
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Pre-Sobol Analysis

Sobol Sensitivity Analysis

Generation of Parameter Sets

Model Simulation

Computation of Sobol Indices

Analyze & Interpret

Figure 1.1: General workflow of Sobol SA
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We can assume that x̂ is a random vector, with a certain probability density function,
P(x̂). Note that the pth moment of the output y is given as:

⟨y(p)⟩ =
∫

Cd
f p(x1, . . . , xd)P(x1, . . . , xd) dx (1.14)

The very first proposers of FAST, Cukier et al. [9], had proved that via the utilization
of the multidimensional Fourier transformation (multiFt) of f , it is theoretically possible
to obtain a variance decomposition (similar to ANOVA) of the variance of y in terms
of the input features and their interactions. The problem, however, is a very high
computational complexity led by the multiFt. Hence, authors had shifted to compute
monodimensional Fourier transformation (monoFt) instead. Such monoFt is done
along a certain curve and exploring the space of the unit hypercube, Cd. This curve is
characterized by a set of parametric equations:

xi = Ti(sin ωis), ∀i = 1, . . . , d (1.15)

Here s is a scalar variable, and varies as −∞ < s < ∞. wi, ∀i = 1, . . . , d comprises a
set of different angular frequencies associated with each input feature. Ti are transfor-
mation functions for which several options were proposed throughout the literature.
[9] originally suggested:

Ti : xi 7→ xievi sin ωis, ∀i = 1, . . . , d (1.16)

Here vi represents the endpoints of the assumed (estimated) ranges of the variation
of the feature xi. Furthermore s lives in (−π

2 , π
2 ). In their review of the FAST method,

Saltelli et al. [47] had shown that such transformation 1.16 fits merely for features
possessing long-tailed and positively skewed probability density functions. Another
type of transformation function was proposed by Koda et al. [23]:

Ti : xi 7→ xi(1 + vi sin(ωis)) (1.17)

Again in the review by [47], Equation 1.17 is shown to possess an U-shaped probabil-
ity density function (thick tails but slim middle region). Hence, such transformation
function does not fit for the uniformly distributed features, which would rather be
a more general setup to begin with. Concurring with that, [9] suggests a general
differential equation form, whose solution leads to the optimal search curve:

π
√
(1 − x2

i Pi(Ti)
dTi(xi)

dxi
= 1 (1.18)

Here Pi is the assumed probability density function of the feature xi. The transformation
function which is the solution to this differential equation is proposed by [47], and is
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given as:

Ti : xi 7→
1
2
+

1
π

arcsin(sin ωis) (1.19)

Such transformation function generates a set of oscillating straight lines in [0, 1],
whose empirical distribution can be considered as uniform [47].
Now, we continue from where we left off at Equation 1.15 (xi = Ti(sin ωis)). The
core idea here is that whatever the f and Ti are, the variation of s in [−∞,+∞]
results in a systematical search over Cd, simultenously over all the input features.
During this process, each xi oscillates with the respective ωi, thus y exhibits various
periodicities along with various frequencies ωi. If xi significantly affects y, then there
will be considerable amplitude oscillations of y at the frequency wi. This serves as the
foundation for calculating a sensitivity measure that is based on the coefficients of the
appropriate frequency wi and its harmonics. We say that the curve we are exploring is
space filling if wi are linearly independent [47]:

d

∑
i=1

riωi ̸= 0;−∞ < ri < +∞ (1.20)

Using, Ergodic theorem of Weyl [68], one can show that the statistical moments
described in Equation 1.14 can be evaluated via one-dimensional integral along the
curve:

yp = lim
x→−∞

1
2R

∫ R

−R
f p(x1(s), . . . , xd(s))ds (1.21)

Moreover, according to Weyl’s theorem [68][47], Equation 1.14 and Equation 1.21 are
equivalent:

⟨y(p)⟩ ≡ y(p) (1.22)

Hence, for instance, model’s variance:= D is given as:

D = ⟨y(2)⟩ − (⟨y(1)⟩)2 ≡ y(2) − (y(1))2 (1.23)

And now we can compute model’s variance as we have (1.21) to compute the Equa-
tion 1.23.

It is only an ideal case that the frequencies ωi are incommensurate, that is the curve
is space-filling [9]. However, such ideal case is not practically possible as the precision
of computers are limited. Hence, a commensurate set of frequencies proposed by
Schaibly et al. [52] can be used for the computation of the first order sensitivity indices
(main effects). As the frequencies are no longer linearly independent, there is a positive
R such that f (x1(s), . . . , xd(s)) = f (x1(s + R), . . . , xd(s + R)). In such case the curve
becomes a closed path and the equivalency mentioned in Equation 1.22 is no longer
true [47]. It has been proven by Cukier et al. [8] that R = 2π if the frequencies ωi are
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positive integers. Then we can view f (x1, . . . , xd(s)) in this finite domain of (−π, π).
This redefines Equation 1.21:

y(p) =
1

2π

∫ π

−π
f p(x1(s), . . . , xd(s))ds (1.24)

Consequently the variance D of the model is redefined to be:

D = y(2) − (y(1))2

=
1

2π

∫ π

−π
f 2(x1(s), . . . , xd(s)) ds −

[
1

2π

∫ π

−π
f (x1(s), . . . , xd(s)) ds

]2 (1.25)

Let us for the simplicity of the notation rewrite f (x1(s), . . . , xd(s)) := f (s). Fourier
series expansion of f (s) is then:

y = f (s) =
+∞

∑
j=−∞

αj cos js + β j sin js (1.26)

Here αj and β j are the Fourier coefficients and are defined as:

αj =
1

2π

∫ π

−π
f (s) cos js ds (1.27)

β j =
1

2π

∫ π

−π
f (s) sin js ds (1.28)

The spectrum Θj of the Fourier expansion is given by:

Θj = α2
j + β2

j for j ∈ Z, Z = {−∞, . . . ,−1, 0, 1, . . . ,+∞} (1.29)

Eventually, we now know a way to approximate Di, the proportion of the output
variance D caused by the input feature Xi. To do so, the spectrum Θj is evaluated for
the fundamental frequency ωi and its higher harmonics ρωi [9]:

Di = ∑
ρ∈Z0

Θρωi

= 2
+∞

∑
ρ=1

Θρωi

(Z0 = Z − {0})

(1.30)
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Significantly enough, Equation 1.30 is equivalent to the numerator of the Equation 1.1.
To estimate the total variance of the model, we sum up all the spectrums Θj of the
Fourier series expansion, for j ∈ Z{0}:

D = ∑
Z{0}

Θj

= 2
+∞

∑
j=1

Θj

(1.31)

Equation 1.31 is equivalent to the denominator of Equation 1.1. Moreover, by Parseval’s
Theorem, Equation 1.31 is also equivalent to Equation 1.25. Finally, the FAST sensitivity
index := SFAST

i representing the main effect of Xi, is then given as:

SFAST
i =

Di

D
=

2 ∑+∞
ρ=1 Θρωi

2 ∑+∞
j=1 Θj

=
∑+∞

ρ=1 Θρωi

∑+∞
j=1 Θj

(1.32)

Saltelli et al. [47] extended the classical FAST of Cukier [8][9], by also incorporating
the notion of total effects, as we have already mentioned in the Sobol chapter.

Consider all the frequencies that are /∈ {ρ1ω1, . . . , ρdωd} for ρi = 1, . . . ,+∞ ∀i =
1, . . . , d. These frequencies contain the residual variance of the model := Dres:

Dres = D − ∑
i

Di (1.33)

Dres contains the variance generated by the interactions among the input features.
Define the frequency of Xi as ωi and define the frequency of all the other features as
ω¬i. If we then evaluate the spectrum for the frequency ω¬i, and higher harmonics
ρω¬i, we can approximate the partial variance D¬i, representing all the effects of any
order (interactions) including no contribution from Xi. Total variance caused by Xi is
then [18]:

DTi = D − D¬i (1.34)

Consequently, Total FAST indices, SFAST
Ti

are:

SFAST
Ti

=
DTi

D
(1.35)

This is also equivalent to Equation 1.12. The advantage of this algorithm is that for
each Xi one only needs to opt two values for the frequencies: ωi and ω¬i. In [47], there
is a detailed discussion about the way ωi and ω¬i are selected.

To sum up about the FAST method (and its extension for the total order indices); it is
a model-free (model-agnostic), variance based, global sensitivity analysis technique, just
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like the Sobol method. Theoretically, both Sobol and FAST are capable of measuring
the high-order interactions between the input features, but some researchers assessed
that FAST is not appropriate for high dimensions [39][47][69]. This is primarily due to
the formulation of the fixed minimum sample size Nmin. [8][47] is:

Nmin = 2Mωmax + 1 (1.36)

Here M is the interference parameter, i.e., the number of harmonics to sum in the Fourier
series decomposition (taking values usually 4-6), ωmax is the maximum frequence of the
set ωi. This is not the most efficient approach as the ωmax is an increasing function of the
dimension d. Method demands more samples for higher values of d, hence potentially
increasing the computational cost up to unacceptable levels [51]. Furthermore, in
another study by Iooss et al. [21] it was shown that FAST performs less efficiently than
Sobol for higher dimensions. To overcome such disadvantages of the FAST; RBD-FAST
was proposed. We proceed with introducing the formulation of the RBD-FAST method.

RBD-FAST

The main difference in RBD-FAST method is that, unlike the complex frequency
selection algorithm of the FAST method, all the input features are sampled using the
same frequency ω f ixed, which can theoretically take any integer value up to N−1

2M . The
following parametric equation ia used to obtain a sample of N points over the interval
(−π, π):

xi = Ti(sin ω f ixedsij) ∀i = 1, . . . , d, ∀j = 1, . . . , N (1.37)

Here si1, si2, dots, siN represent the ith random permutation of the N samples. Conse-
quently Equation 1.37 generates a different random permutation for the feature xi. We
simulate the model for each sample:

Y(sj) = f (x1(s1j), x2(s2j), . . . , xd(sdj)) ∀j = 1, . . . , N (1.38)

We define Ysorted(sj) in a way that: The outputted values of Y(sj) is reordered in an
ascending sorted order of xisij. With such reordering, the harmonic content of xi gets
propagated to Ysorted(sj) via f (x1(s1j), x2(s2j), . . . , xd(sdj)) [64]. The harmonic content
of such Ysorted(sj) determines how much xi affects Y, i.e., sensitivity of Y to xi, in the
following Fourier Transform:

F(ωfixed) =
1
π

N

∑
j=1

Ysorted(sj) · e−(Im)·dωfixed·sj

Note: (Im) is an imaginary number.

(1.39)
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Finally, by evaluating Equation 1.39 at M fixed ω f ixed values (for simplicity: ω f ixed =

1, 2, . . . , M), we get Di, the approximation of the xi’s variance contribution to the total
model variance:

Di =
M

∑
l=1

[
1
π

N

∑
j=1

Ysorted(sj) · e−(Im)·dωfixed·sj

] ∣∣∣∣ωfixed = l

=
M

∑
l=1

F(ωfixed)

∣∣∣∣ωfixed = l

=
M

∑
l=1

F(l)

(1.40)

Equation 1.40 is again equivalent to Equation 1.30 and to the denominator of Equa-
tion 1.1:

VarXi(EX∼i(Y|Xi)) ≡ 2
+∞

∑
ρ=1

Θρωi ≡
M

∑
l=1

F(l) (1.41)

Remembering that D is the total variance of the model, the long-awaited RBD-FAST
sensitivity indices, ψi, are defined as:

ψi =
Di

D
(1.42)

To summarize, the RBD-FAST method is a hybrid of RBD with classic FAST. First,
the d input features are partitioned into groups of the same cardinality [64]. Then, RBD
is applied independently within each group of factors. Finally, the FAST is applied
between the groups, whereas a different frequency is assigned to each group. By
that, RBD-FAST promises to combine RBD’s computational efficiency with the FAST’s
accurate algorithm.

Density Based Sensitivity Analysis

In the upcoming section, we will focus on density-based methods, which examine the
distribution behavior of the output rather than solely focusing on variance characteriza-
tion.

Delta Moment Independent Sensitivity Measure

Motivation

So far, we have focused on variance-based methods, where the correlations of the
input features were also of significant concern. For the Sobol method, in the presence
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of uncorrelated inputs, Oakley et al. [37] found that the model’s representation
(known as the Sobol decomposition) accurately represents its structure. However, the
representation no longer offers the most accurate description of the model’s structure
when correlations between inputs become apparent. Moreover, Borgonovo [4], relying
on classical utility theory, argues that the decision-maker’s overall level of knowledge
cannot be determined purely by variance. They further argue that since variance is
merely one of the moments of the output distribution, determining which parameter
reduces variance, the most does not equate to determining which parameter influences
the decision-maker’s state of knowledge of the output the most. A moment-independent
global sensitivity method concurring with such reasoning has been proposed by Chun
et al. [6]. Moment independence implies that the objective of the method is no longer
the variance of the output distribution but rather the entire distribution itself. The
sensitivity formulation of [6] is as following:

CHTi =

√∫
(yi

α − y0
α) dα

E[Y0]
(1.43)

Here yi
α is the αth quantile if Y (model output) for the sensitivity case, and y0

α is the
αth quantile of Y for the base case. Chun-Han-Tak (CHT) measure has a concept of
"sensitivity case" [6, p. 314], implying the model recomputations in certain "cases,"
where they are all meant to infer that our knowledge state regarding the input features
has changed [[4]][6]: (a) the uncertainty range is changed; (b) the type of distribution
is changed; and (c) the uncertainty associated with a feature is entirely removed.
CHTi index is an expression of Y’s cumulative distribution function (CDF), FY. An
interpretation of Equation 1.43 is that CHTi quantifies the change in the area associated
with the shift in the cumulative distribution function of Y from the base case to a
sensitivity case [4].

It is good to pause and reflect on the differences between CHTi indices [6] and the
indices of the variance-based methods we have mentioned. First, CHTi indices are
based on the sensitivity case abstraction, but Sobol and RBD-FAST methods are not.
Furthermore, Sobol and RBD-FAST focus on the moment (variance) of Y’s distribution,
but CHTi indices do not. More specifically, CHTi refers to the question of "which
input features were (and how much) responsible for the distribution shift of Y, given a
specific scenario? (e.g., uncertainty ranges of all features are reduced by a factor of 5)".
Meanwhile, Sobol and RBD-FAST aim to quantify the feature contribution to Var(Y)
without any scenarios of hypothetical sensitivity cases.

Borgonovo [4] builds up on these concepts and proposes Delta Moment Independent
Measure method that is moment independent, sensitivity-case independent and does
not assume uncorrelated input features.
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Formulation

Let χ = (X1, . . . , Xn) ∈ Rn be the set of input features. Set a function g(χ) : E ⊆
Rn −→ R, so that Y = g(X) (g forms a functional relationship between χ and Y). Here
E defines the valid range of values (measurable subset) for X in the n − dimensional
real space, representing a specific region or a constraint on the inputs for g(X). Say
x = (x1, . . . , xn), is the realization vector of χ. The joint cumulative distribution of the
χi is given as Fχ(x), which also represents our state of knowledge on χ. The respective
joint density of χ is given as fχ(x). Then fXi xi is the marginal density of the realization
xi, since the marginal and joint densities are related as: fXi(xi) =

∫
· · ·

∫
fχ(x)∏s ̸=i dxs.

Regarding the output Y; FY(y) and fY(y) are cumulative distribution function and its
corresponding density function, respectively. Finally, fY|Xi

expresses the conditional
density of Y given one of the input features (Xi) is fixed.

With these definitions at disposal and as a next step towards definition of the mo-
ment independent importance measure, the behavior of the whole distribution of the
output Y subject to constrains on input features, Xi is being observed. Figure 1.2 shows
a sample example for two such densities ( fY(y), fY|Xi

). The shift (shaded area) gets
quantified by the enclosed shaded area in between:

s(Xi) =
∫
| fY(y)− fY|Xi

(y)|dy (1.44)

As s(Xi) is a function of random variable, we can get the expected value of it as:

EXi [s(Xi)] =
∫

fXi(xi)

[∫
| fY(y)− fY|Xi

(y)|dy
]

dxi (1.45)

Eventually, the moment independent sensitivity indicator, σi, is defined as:

σi =
1
2

EXi [s(Xi)] (1.46)

σi is the (moment-independent) sensitivity index of the ith input feature (Xi) and
represents the normalized expected shift in the distribution of Y provoked by Xi [4].
Furthermore, we can represent any group of input features as a random vector G =

(X1, . . . , Xt). Then the joint sensitivity indicator of this group:

σ1,...,t =
1
2

EG[s(G)] =
∫

fX1,...,Xt(x1, . . . , xt)×
[∫

| fY(y)− fY|X1,...,Xt(y)|dy
]

dx1 . . . dxt

(1.47)
where
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Figure 1.2: An example for shift between unconditional and conditional densities of Y.
Shaded region is the shift induced by fixing input feature Xi’s realization
xi∗. Own Visualization.

∫
fX1,...,Xt(x1, . . . , xt) =

∫
· · ·

∫
fχ(x) ∏

q ̸=1,...,t
dxq (1.48)

fχ(x) is the joint density of the set of input features as mentioned before.

Properties of σi:

Mathematical properties that moment-independent index σi possesses are arranged in
Table 1.1.

Table 1.1: Properties of σi

Property

1 σi is bounded as 0 ≤ σi ≤ 1
2 If Xi does not affect Y (Y is independent of Xi), then σi = 0
3 Significance of all features together equals unity: σ1,...,n = 1
4 If Xi does not affect Y (Y is independent of Xi) but Xj affects

Y (Y is dependent on Xj), then: σij = σj
5 σij is bounded as σi ≤ σij ≤ σi + σj|i
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PAWN

Motivation

In previous sections we have mentioned variance (Sobol Sensitivity Analysis, Random
Balanced Design Fourier Amplitude Sensitivity Testing (RBD-FAST)) as well density
(Delta Moment Independent Sensitivity Measure) based sensitivity analysis methods.
We have already argued about the conveniences of utilizing the whole density (probabil-
ity density function) information over the mere (second) moment (variance) information
for the input-output relation. Pianosi et al. [41] advocate that the application of density-
based methods in some fields has been limited up until now. Paper further asserts
one potential explanation for the limited adoption as the higher complexity associ-
ated with implementing density-based indices compared to variance-based indices.
Such complexity is primarily due to the requirement of knowing multiple conditional
probability density functions (PDFs) for computation. Since PDFs are often unknown,
empirical PDFs are typically used instead. The most straightforward approach involves
constructing a histogram based on the data sample, but the resulting shape can be sig-
nificantly influenced by the first bin’s position and the bin width, making it challenging
to determine appropriate values. Kernel density estimation (KDE) methods offer a
more accurate approximation of PDFs by only specifying a single bandwidth parameter.
Another approach involves approximating the cumulative distribution function (CDF)
first and then deriving the PDF as its derivative [30]. However, the approximation
procedure cannot be overly complex as computing density-based sensitivity indices
often necessitates estimating numerous empirical PDFs. At a minimum, one conditional
PDF per uncertain input is required, and even more are needed to consider multiple
conditioning values for each input. Furthermore, the number of PDFs to be estimated
becomes excessive when analyzing the accuracy or convergence of sensitivity indices,
which involves computing the indices over and over using different bootstrap resamples
or subsamples of varying sizes from the original dataset [41]. Expanding upon that,
Piano and Wagner [41] propose the PAWN method for global sensitivity analysis. The
main idea of PAWN is to describe the output distribution based on its Cumulative
Distribution Function (CDF) instead of its Probability Density Function (PDF). This
approach offers the benefit of approximating empirical CDFs from a data sample
without any computational expenses or the need for tuning parameters. PAWN also
provides an additional benefit in that sensitivity indices can be effortlessly calculated
for either the entire range of output variation or a specific sub-range. This flexibility
proves particularly advantageous in applications where the focus is on a certain region
of the output distribution, such as the tail.
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Figure 1.3: Sample Visualization of the Kolmogorov-Smirnov statistic in our context.
Own Visualization.

Formulation

Suppose that the model has d features: (X1, . . . . , Xd). The proposed method comes up
with a specification of PAWN index, ρi, which evaluates sensitivity by quantifying the
changes in the output distribution that occur when the uncertainty associated with
one or more input features are fixed. To be specific, the conditional distributions that
are obtained through the variations of all input features except Xi, are compared with
the unconditional probability distribution of the output y when all input features are
allowed to vary together. FY(y) represents the unconditional cumulative distribution of
the output, whereas Fy|Xi

(y) represents the conditional cumulative distribution of the
output via fixing the Xi feature. Then, Kolmogorov-Smirnov statistic [24][56] is used as
a metric to quantify the difference between unconditional and conditional cumulative
distribution functions:

Kolmogorov_Smirnov(Xi) = max
y

∣∣∣Fy(y)− Fy|Xi
(y)

∣∣∣ (1.49)

A sample visualization of Kolmogorov-Smirnov statistic is given in Figure 1.3. Notice
that in the figure λ plays a proxy (indicator) role for the existence of fixed Xi. That
is, Kolmogorov-Smirnov statistic is dependent only on the specific fixed Xi feature.
Thus PAWN index, ρi, is defined by a statistic (such as the maximum or the median)
calculated across all possible values of Xi:

ρi = statXi [Kolmogorov_Smirnov(Xi)] (1.50)
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Properties of ρi

Properties of ρi are gathered in Table 1.2. First property mentions the bounds for ρi,
which is direct consequence of the bounds of Kolmogorov-Smirnov statistic. In fact, it
is one of the main reasons why this type of statistic is utilized for the PAWN analysis.
Let us convince ourselves about the Property 1.

Lemma 1. The Kolmogorov-Smirnov statistic for two CDFs is bounded between 0 and 1.

Proof. The statistic is defined as the supremum (or maximum) of the absolute differ-
ence between the conditional distribution function, Fy|Xi

(y), and the unconditional
distribution function, Fy(y), evaluated at each point y:

D := Kolmogorov_Smirnov(Xi) = sup
∣∣∣Fy|Xi

(y)− Fy(y)
∣∣∣

Let us first verify the lower bound,0 ≤ D:
The conditional distribution, Fy|Xi

(y) is a function that starts at 0 and increases
monotonically to 1 as y moves from negative infinity to positive infinity. On the other
hand, the unconditional distribution function, Fy|Xi

(y), also ranges from 0 to 1.
Therefore, at any given point y, the absolute difference |Fy|Xi

(y)− Fy(y)| can only be
greater than or equal to 0. Taking the supremum (maximum) over all y, we find that
the Kolmogorov-Smirnov statistic is also greater than or equal to 0. Hence, the lower
bound is satisfied: 0 ≤ D.

Next, let us verify the upper bound, D ≤ 1:
To prove the upper bound, we can consider the maximum possible difference between
the two CDFs, which occurs when one CDF is 0 and the other is 1. Without loss of
generality, let Fy(y) = 0 and Fy|Xi

(y) = 1 at some point y. In this case,
|Fy(y)− Fy|Xi

(y)| = 1. Since D is defined as the supremum of these absolute
differences over all y, it follows that D ≤ 1.
Combining the lower and upper bounds, we conclude the proof that 0 ≤ D ≤ 1. Thus,
the Kolmogorov-Smirnov statistic between two different CDFs is bounded between 0
and 1.

Corollary. 0 ≤ ρi ≤ 1

Proof. Since Equation 1.50, and Lemma 1, it is straightforward that any statistic such as
mean, median, max, min performed over the domain of [0,1] will project to [0,1].
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We continue with the second and third properties. As per the definition of ρi, the
influence is quantified by the statistic over the two CDFs distance induced by the fixed
Xi. Hence, if the measure over the CDFs is less, then Xi’s influence is less, indeed. In
an extreme case, if two CDFs coincide, then ρi will be 0, as a result of the Kolmogorov-
Smirnov distance, which would mean that fixing Xi plays absolutely no effect on y.

Table 1.2: Properties of ρi

Property

1 ρi is bounded as 0 ≤ σi ≤ 1
2 Low ρi means low influence of Xi on y
3 ρi = 0 =⇒ Xi is noninfluential

Numerical Implementation - Tailored Sampling Strategy [41]

The analytical solution for the Equation 1.49 (thus for obtaining ρi via Equation 1.50)
usually does not exist. A workaround for that would be to approximate Kolmogorov-
Smirnov statistic via empirical methods. An approximation would look like:

̂Kolmogorov_Smirnov(Xi) = max
y

∣∣∣F̂y(y)− ̂Fy|Xi
(y)

∣∣∣ (1.51)

Here F̂y(y) and ̂Fy|Xi
(y) are the empirical (approximations) of the unconditional

and conditional CDFs, respectively. They are obtained through appropriate sampling
algorithms (See 1.4 (Sampling Strategies) for a detailed discussion about sampling and
more.) As soon as one decides about the setup of the sampling procedures, F̂y(y) is
obtained by N number of model recomputations, each of them being originated via
newly sampled input tuples. Important thing to note is that for getting F̂y(y) every
feature is allowed to vary (in sampling step) within their respective spaces. For ̂Fy|Xi

(y),
however, M number of model recomputations performed, while only non-fixed features
(every feature other than Xi) are being sampled. Following this path, we redefine
(approximate) PAWN indices as:

ρ̂i = stat
Xi=Xi

(1),Xi
(2),...,Xi

(k)

[
max

y

∣∣∣F̂y(y)− ̂Fy|Xi
(y)

∣∣∣]
= stat

Xi=Xi
(1),Xi

(2),...,Xi
(k) [Kolmogorov_Smirnov(Xi)]

(1.52)
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Here Xi
(1), Xi

(2), . . . , Xi
(k) are k number of samples generated for the fixed feature Xi.

The detailed process of the numerical implementation is described in Figure 1.4. Using
a technique like the one in Equation 1.52 is known as a Tailored Sampling Strategy. The
term "tailored" refers to the fact that a significant portion of the input samples used to
calculate the sensitivity indices (ρi) are concentrated on specific subregions within the
input variability range [42].

Enhanced Numerical Implementation - Approximation of ρi from any Generic
Dataset [42]

In contrast to tailored sampling strategy, generic sampling techniques would distribute
input samples as evenly as possible throughout the input space. Latin hypercube
sampling and quasi-random sampling are just a few examples of general sampling
techniques that are covered in 1.4. To approximate all PAWN sensitivity indices using
the tailored sampling strategy, a model must be evaluated a total of N + k × M × d
times, d being the number of input features. The issue of how to select the triple
(N, k, M) is still up for question, as it has not been formally studied and remains an
open issue in the application of PAWN. However, this decision is crucial, because
both the computational effort (total number of model evaluations) and accuracy of the
PAWN indices are dependent on the choice of (N, k, M) [42]. Another problem with
the tailored approach is that a significant portion of the computational work goes into
deriving the Conditional CDFs, FY|∼Xi , which are not reusable for other uncertainty
or sensitivity analysis techniques that need a generic sample. This section presents
a method for approximating PAWN indices from a general dataset, addressing the
problems of tailored sampling strategy.

Pianosi et al. (2018) [42] propose the method by questioning how to use Equation 1.52
with a set generated by Latin Hypercube Sampling? A solution for that is suggested as
following:

• Split each Xi to n equally spaced intervals within the general bounds of xi

• Define Ik as such kth interval

• Redefine the conditional samples YCk
i accordingly.

• New approximation technique for the PAWN indices is:

Ŝ i = statk=1,...,n max
y

|F̂y(y)− F̂y|Xi(y|Xi ∈ Ik)|

= statk=1,...,nKolmogorov_Smirnov(Ik)
(1.53)
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Unconditional CDF derivation
(N recomputations)

Conditioning value generation
(per k recomputations).

Conditional CDFs derivation, FY|∼Xi

( per M recomputations)

Compute Kolmogorov-Smirnov
Statistic between the M Conditional
CDFs (all belonging to the Xi)
vs. the unconditional CDF.

Deriving ρi via computing the statistic
over the M accumulated results.

For each input feature Xi : (X1, . . . , Xd):

For each conditioning value Xi
(1), . . . , Xi

(k):

Figure 1.4: Workflow for approximations of ρi’s using tailored sampling strategy
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Using Equation 1.53 frees the user from the need of explicitly specifying M, the size of
the conditional sample, because M automatically becomes the the number of points in
each Ik. For example, if the samples are uniformly spread throughout the dataset, then
M ≈ Ns

n , where Ns is the total number of samples and n is the number of subintervals
within the bounds of Xi. In our original definition N corresponds to the number
simulations for the unconditional CDF’s derivation. In this approach one can either set
N to Ns, or, for instance, randomly extracting a subsample with the same size as the
conditional samples (N = M) [42].
Overall, the main contribution of this enhanced numerical implementation is that it
alleviates the issue of N and M selection of the tailored sampling approach. In fact,
the algorithm is fully controlled by the single value Ns, the number of samples (e.g. by
Latin Hypercube Sampling) [42]. When mentioning PAWN in our methodology, we are
specifically referring to this Enhanced Numerical Implementation.

1.4 Review & Mathematical Formulation of Sampling strategies

More often than not, there is no analytical solution for the calculation of sensitivity
indices Si. One remedy for that would be the approximation of the true solution
by numerical methods. Numerical methods which try to reconstruct the relation
between inputs and outputs rely on the concept of simulation. To be representative
and comprehensive, these simulations need to encapsulate sufficient amount of input-
output scenarios. Hence, adequate amount and quality of samples are needed for
a decent numerical approximation performance [32][20]. In other words, sampling
methodologies attempt to select the subset of individual data points, such that their
common behavior estimate the characteristics of the whole population. We pay regard
to a number of different sampling techniques and seek for insights and justifications
for uses in our methodologies.

1.4.1 Monte Carlo Method

We start by introducing the relatively simpler method for solving the problems via
sampling in probabilistic frame. The core idea is to leverage randomness to find
solutions to issues that, in theory, may be deterministic. Monte Carlo methods are
frequently applied to mathematical and physical issues and are particularly helpful
when it is challenging or impossible to apply alternative strategies. The three problem
types of optimization, numerical integration, and producing draws from a probability
distribution are where Monte Carlo methods are most frequently applied [25], whereas
the latter task overlaps with our study. In theory, every problem with a probabilistic
interpretation can be solved using Monte Carlo methods. By applying the empirical
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mean of independent samples of the variable, one can approximate integrals specified
by the expected value of some random variable according to the law of large numbers.
Basically, the workflow in overall uncertainty quantification context (also in sensitivity
analysis) is given as:

1. Get a probability frame (distribution)

2. Generate samples using a pseudo-random number generator

3. Perform deterministic computations using these samples

4. Aggregate the results and report the quantities of interest

Convergence Rate of the Monte Carlo method

Convergence rate of Monte Carlo method for N simulations is given as: O( 1√
N
).

Proof. Let N be the number of simulations, µ be the true mean, σ2 be the true variance,
and E(·) be empirical mean. Then By the Law of Large Numbers:

µ → E(·) as N → ∞

Next, by the Central Limit Theorem, we have:

E(·) ∼ N
(

µ,
σ2

N

)
as N → ∞

The standard deviation of the sample mean:

Error =

√
σ2

N
Thus, the convergence rate is given as:

Convergence Rate ∼ 1√
N

as N → ∞

As a positive note, the convergence rate of the algorithm does not depend on the
input dimension. Moreover, the independent samples can be simulated at the same
time, and that makes the algorithm "embarrasingly parallel". However, one big issue
is about the significant slowness of the algorithm (O( 1√

N
)). As a simple scenario, if

one wants to reduce the error by a factor of 10, then 100 times more simulations are
needed to be performed. This roots from the pure random nature, hence, relatively
poorer accuracy of the algorithm. Thus, we consider the next question: how to increase
the accuracy of the Monte Carlo method? The options include:
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• improving the technical details of the algorithm implementation, such as vectoriz-
ing (removing if statements), using memory efficiently etc.

• increacing N

• decreasing σ2

• improving the sampling logic

Let us go over the listed options above. The first item clearly does not change the
nature of the problem, and it has theoretical limits induced by the algorithm. The
second item, increasing N, apparently (by central limit theorem) would yield more
accurate approximation results. However, this approach is not desirable, e.g. high
computational costs. Another approach is about decreasing the σ2. The variance
reduction methods like Control Variates [28], Importance Sampling [60], Stratified
Sampling [40] are concentrated on this task. Because of its relevance to the context of
sensitivity analysis[65][54][66], we will pay a special attention to the Latin Hypercube
Sampling method [1], a type of Stratified Sampling. But before that, we consider the
last item, improving the sampling logic, which approaches the problem via proposing
a different methodology of sampling, e.g. Quasi-Monte Carlo sampling. In the next
part, we are delving into the specifications of the Quasi-Monte Carlo method.

1.4.2 Quasi-Monte Carlo Method

The Quasi-Monte Carlo method incorporates low-discrepancy sequences (sub-random
sequences), to solve the problems that the standard Monte Carlo method is trying
to solve originally. The difference between the methods is the way the instances are
sampled. We have mentioned that, the standard Monte Carlo method is based on
pseudorandom number sequences. Quasi-Monte Carlo method, on the other hand,
uses a "deterministic" way of going over the space. Sobol sequences [57] is an example
of a low-discrepancy sequence, and will be introduced in the next part. The use of
low-discrepancy sequences has the benefit of a quicker rate of convergence.

Approximating the error bounds of Quasi-Monte Carlo method

Both Monte Carlo and Quasi-Monte Carlo methods can be defined for the approxima-
tion problem of the following integration type:

∫
[0,1]s

f (u)du ≈ 1
N

N

∑
i=1

f (xi)
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The original integral is performed over the s-dimensional unit cube. Hence, the sam-
ple set = {x1, . . . , xN} is composed of elements such that xi ∈ Rs. The approximation
error is:

ϵ = |
∫
[0,1]s

f (u)du − 1
N

N

∑
i=1

f (xi)| (1.54)

And according the Koksma-Hlawka inequality, it is bounded as:

|ϵ| ≤ V( f )DN (1.55)

Here V(f) defines the Hardy-Krause variation of the function f [35], whereas DN is
the discrepancy of the the set . Such discrepancy is defined as:

DN = sup
P⊂[0,1]s

∣∣∣nP

N
− volume(P)

∣∣∣ (1.56)

Here P corresponds to a rectangular solid in [0, 1]s, whereas nP is the number of its
members.
Basically, given |ϵ| ≤ V( f )DN , the idea of the low discrepancy sequences is minizing
the error (ϵ) by decreasing DN , which is obtained by producing the sample set whose
members are "well spaced". Consequently, by Equation 1.55, it is possible to show
that the error approximation (convergence rate) of the Quasi-Monte Carlo method is
O( (logN)s

N ) or asymptotically O( 1
N ) . Asmussen et al. have shown that a suitable low-

discrepancy sequence almost always can be chosen, or the integrand can be transformed
in a suitable way, to ensure that Quasi-Monte Carlo performs at least as well as Monte
Carlo (and usually significantly better) [3]. Refer to the Figure 1.5, to see an example
of sampling result for 500 samples in [0, 1]. Notice the "well-spaced", and space
covering character of Sobol sequences in contrast to the pseudorandom sequences. It is
worthwhile to note that, Saltelli [48] has extended the Sobol sequences in order to lower
error rates in the resulting sensitivity index calculations (more details can be found in
[38][5][48]).

1.4.3 Latin Hypercube Sampling

As we have mentioned above, Latin Hypercube Sampling is a type of Stratified Sam-
pling. To sample N point in a d-dimensional space, the algorithm divides each of the
dimensions into N equiprobable intervals. By that, one gets Nd subcubes. The points
are then sampled within each subcube so that the samples do not overlap even when
projected to lower dimensions.
To be more precise, for N samples, define {πk} representing the independent random
permutations of {1, . . . , N}, for k = 1, . . . , n. Each of such permutations are uniformly
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Figure 1.5: An example comparison of Sobol Sequences vs. Pseudorandom sequences
for 500 samples in [0, 1]. Own Visualization.

distributed over all potential N! permutations [26]. The Latin Hypercube Sampling
coordinates for the each sample is then given as:

NLHS_coord
i =

πk(i)− 1 + Uk
i

N
i = 1, . . . , N k = 1, . . . , n Uk

i ∼ U(0, 1) (1.57)

Essentially, Latin Hypercube Sampling is designed by superimposing well stratified one-
dimensional samples [26] and it tries to ensure that the coordinates for each sample are
more evenly distributed to cover the input space. An alternative simpler explanation can
be presented via the visualization in Figure 1.6. One can think the 2D space as a chess
board and each sample as the rook. The Latin Hypercube Sampling technique ensures
that, regardless of the number (say N) of samples ("rooks") placed in the sampling
space ("board"), the samples are distributed in such a way that no two samples can "see"
("capture") each other when projected onto a N-grid of isoprobabilistic lines. Moreover,
see the Figure 1.7 for the comparisons of the three different 1D sampling schemes for
1000 instances in [0, 1].

1.5 Explainable AI for Clustering step

In this section, we explore the integration of Explainable AI (XAI) techniques into the
clustering process. This is an essential yet often supplementary aspect of clustering
analysis, particularly when focusing on the interpretability of the results. We emphasize
the use of representation learning paradigms to enhance understanding.
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(a) 2 samples

(b) 4 samples
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(c) 5 samples

(d) 12 samples

Figure 1.6: A "chessboard" comparison between 2D space coverage of pseudorandom
sequences vs Latin Hypercube Sampling for different numbers of samples.
Own Visualization.
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Figure 1.7: An example comparison of Sobol Sequences vs. Pseudorandom sequences
vs Latin Hypercube Sampling for 1000 samples (x axis) in [0, 1] (y axis).Own
Visualization.

For instance, consider a scenario where one seeks to understand both the overall
cluster structure and the specific assignment of individual data points to clusters. This
could involve analyzing embeddings generated by large language models (LLMs) or
graph-based embeddings’ clustering tasks. The goal here is to derive explanations that
shed light on why certain data points are grouped together and how the underlying
structure of the data influences these groupings. To align with the study goals of
explaining the cluster results, an effective solution might be the retrieval of decision
rules for the clustering process. Classification rule extraction methods offer valuable
advantages when applied to the task of clustering. Although clustering is tradition-
ally concerned with grouping similar data points into clusters, integrating such rule
extraction techniques enhances the understanding and interpretability of the resulting
clusters. Alternatively, a viable approach is to treat the clustering problem as a binary
classification task, focusing on specific clusters and posing "this or else" (one vs. all)
questions to extract cluster-specific rules. By doing so, we can obtain rules that are tai-
lored to each cluster using the employed clustering algorithm (which can be perceived
as a black-box in this context). This strategy allows for a more targeted and customized
rule extraction process, enabling deeper insights into the distinct characteristics and
behaviors of individual clusters.

In literature, the subject of creating (retrieving) such decision rules has received con-
siderable attention. Several methodologies have been proposed, including Lightweight
Rule Induction (LRI) by Weiss et al. [67], Maximum-Likelihood Rule Ensembles (ML-
RULES) by Dembczyński et al. [11], Slipper by Cohen et al [7], RuleFit by Friedman et
al. [15]. SLIPPER is a rule learner that constructs rulesets through iterative boosting of
a straightforward, greedy rule-builder. It ensures that the resulting ensemble of rules
remains concise and easily understandable. This is achieved by imposing constraints
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on the rule-builder and employing confidence-rated boosting, an extension of Adaboost
[13]. Despite its simplicity, SLIPPER is both scalable and effective in learning [7]. The
LRI method generates compact rules in the form of Disjunctive Normal Form (DNF).
As a side note, Davey et al. [10] showed that it is theoretically possible to transform
any logical formula into an equivalent DNF. However, in some cases DNF transforma-
tion can lead to exponentially more terms than the original rule set. For instance, a
rule in such form: (X1 ∨ Y1) ∧ (X2 ∨ Y2) ∧ . . . ∧ (Xn ∨ Yn), yields 2n terms for its DNF
representation [10]. Going on with LRI method, assuming for the n-classification prob-
lem, there are an equal number of unweighted rules for each class. When classifying
a new example, all rules are applied, and the class with the most satisfied rules is
chosen. The induction approach seeks to decrease training error without running.
Setting constraints on the size and quantity of rules specifies an overall design. During
training, cases are adaptively weighted using a simple cumulative error technique. The
induction approach is roughly linear in time as the number of induced rules or cases
increases [67]. ML-Rules is an algorithm designed for classification tasks, specifically
focused on probability estimation. In contrast to earlier rule induction methods based
on sequential covering, ML-Rules takes a different approach. It treats each individual
decision rule as a base classifier within an ensemble. The ensemble is constructed by
iteratively minimizing the negative log-likelihood, resulting in the estimation of the
class conditional probability distribution [11]. In all of the methods we have explored
thus far, rule derivation relies on the process of rule induction, where each decision
rule serves as the base classifier for the inductive process, allowing the creation of an
ensemble of classifiers. Such ensemble is formed by iteratively minimizing a particular
loss function in a greedy manner. A different, and more explanability-friendly approach
is RuleFit. In RuleFit, generalized rules drawn from the data are combined linearly
to create general regression and classification models. Each rule is composed of a
conjunction of a few simple statements relating to the values of individual input vari-
ables. It has been demonstrated that these rule ensembles achieve predicted accuracy
on par with the best techniques. But interpretation is really where they excel [15].
Each rule has an easy-to-understand structure that makes it simple to comprehend
how it affects specific predictions, subgroups of predictions, or the full space of joint
input variable values. Likewise, the level of significance of the relevant input variables
can be evaluated globally, locally in various areas of the input space, or at specific
prediction points [15]. The way those simple rules drawn from the data are combined
(in a weighted way) linearly relies on solving a L1-regularized optimization problem
over the weights via Gradient Directed Regularization method proposed by Friedman
et al [14]. The easy-to-understand nature of this method makes it particularly favorable
to use in our methodologies. Moreover, the fact that rules are being extracted from a
tree ensemble, opens a door for utilizing fast algorithms such as gradient boosting and
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bagged decision trees. With that we also ensure the efficient implementation of the
generation of such tree ensembles (weighted combination of the rules). Without loss of
generality, assuming that a bagging estimator is trained for the rule ensembling, the
algorithm generates multiple rules. Then, the notion of semantic deduplication is handy
to ensure the reduced redundancy among the rules. In the Methods section, we describe
the precise approach we employ to integrate rule extraction into the clustering process,
whereas in the Results section, we showcase the obtained outcomes and implement
evaluation strategies to assess the effectiveness of the generated rules.
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[65] M. Ţene, D. E. Stuparu, D. Kurowicka, and G. Y. E. Serafy. “A copula-based
sensitivity analysis method and its application to a North Sea sediment transport
model.” In: Environmental Modelling &amp Software 104 (June 2018), pp. 1–12. doi:
10.1016/j.envsoft.2018.03.002.
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