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1. Introduction and Objectives

The increasing availability of high-resolution seismic data, coupled
with recent advances in machine learning, opens new opportunities
for forecasting complex wave dynamics in three-dimensional (3D) do-
mains. While traditional numerical solvers are accurate, they re-
main computationally expensive for large-scale simulations. Learning-
based surrogates, such as Fourier Neural Operators (FNO), have shown
promise for wavefield approximation, yet their performance on realistic
seismic data is still limited.

Transformer-based architectures, widely successful in natural lan-
guage processing and computer vision, offer strong capabilities for cap-
turing long-range spatio-temporal dependencies. However, their adap-
tation to 3D geophysical forecasting has been hindered by computa-
tional and memory challenges.

In this work, we explore the effectiveness of transformer-based ar-
chitectures for seismic forecasting using a recent large-scale dataset
(HEMEW-3D)[1]. Specifically, we implement and evaluate the Swin-
UNETR model[2], which leverages hierarchical attention and convolu-
tional decoding to learn future wavefield dynamics from historical dis-
placement data.

The main objectives of this study are to:

« Evaluate the SwinUNETR model’s capability to predict 3D seismic
wave propagation on a realistic 10,000-sample dataset.

« Assess both qualitative and quantitative forecasting performance
using slice-wise displacement maps and evaluation metrics (MAE,
RMSE, R?).

« Investigate model behavior through ablation studies and training
with varied hyperparameters (e.g., patch size, attention heads, tem-
poral history).
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Channel 1: Static Material Map
Channel 2,3,4: Three past displacement fields (uUE, uN, uZ) over the first 32 timesteps
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Figure 1: Architecture of the SWinUNETR model for seismic forecasting.
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2. Related Work

- Fourier Neural Operators (FNO)[3] enable efficient learning of surro-
gate models for PDEs, including seismic wave propagation, by mod-

eling long-range dependencies in spectral space.
« Transformers are widely used across domains for learning spatio-

temporal patterns via self-attention, with growing use in physics-

informed tasks.
 Swin Transformers, designed for vision tasks, apply hierarchical at-

tention with shifted windows and have been adapted to 3D imaging

and volumetric learning.
« Seismic forecasting has mostly relied on physics-based numerical

simulations.

3. Data

The HEMEW-3D dataset provides 30,000 high-fidelity 3D simulations
of elastic wave propagation in a 9.6 km3 domain with heterogeneous

geological media. Each sample includes a stochastic shear-wave veloc-
ity (Vg) model.

Seismic motion is recorded as 3-component velocity wavefields over
a 16x16 spatial grid for 20 seconds (2000 time steps at 0.01s). Geologi-
cal inputs and wavefields are discretized into voxelized 3D grids of size
32x32x32 and provided in tabular format.

The model was trained on a set of 10,000 samples at 10 Hz resolu-
tion, using 9000 for training and 1000 for validation. Each input tensor
comprises 4 channels: 3 past velocity components (uz, uy, uy) and 1
velocity model — all encoded as volumetric data.
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4. Methods

We train a 3D SwinUNETR model to forecast future ground motion
velocity using past wavefield snapshots and geological inputs from the
HEMEW-3D dataset. Preprocessing steps include temporal slicing of in-
put sequences, z-score normalization of each feature channel, and spa-
tial alignment via cropping and padding to obtain uniform input vol-
umes. The model is trained using a pure L1 loss function:
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We monitor performance using MAE, RMSE, and R? metrics across
three displacement components: Easting, Northing, and Vertical.

The SwWinUNETR architecture combines shifted window self-attention
with a U-Net-like decoder for efficient modeling of spatial dependen-
cies and hierarchical feature fusion. Its ability to capture long-range
interactions while preserving fine-scale structure makes it well suited
for volumetric learning tasks such as 3D seismic forecasting.

5. Results

The model was trained for 100 epochs using pure L1 loss. Figure 2
shows heatmaps of predicted vs. true East—West velocity (u ) at fixed
r, over height (y) and time (t), capturing key structural patterns. Figure
3 plots velocity magnitude over the width axis for fixed depths (z). The
model follows true trends but underestimates peaks in high-gradient

Zones.
Visualization of ug(r = Xpos,y,t) at fixed x position.
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Figure 2: Ground truth vs. predicted East—West velocity (u ) at fixed x position, shown

as heatmaps over North—South position (Y) and time (T).
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Figure 3: Line plots of predicted vs. true velocity magnitudes along the width axis for
fixed slices = = 8 and z = 24 over the first 3 timesteps. The vertical axis represents
Vul +ud + uZ at location (z, 2, t).

6. Conclusions

The SwinUNETR model demonstrates robust potential for fore-
casting 3D seismic displacement fields from historical data.
Trained on a large-scale subset of the HEMEW-3D dataset, the
model achieves low prediction error under a pure L1 loss formu-
lation. Qualitative results confirm the model’s ability to capture
structural patterns across depth slices, demonstrating its suit-
ability for learning complex 3D spatio-temporal dynamics.

1. Future Work

» Perform ablation studies on architecture (e.g., patch size, attention
depth) and input settings (e.g., history length, normalization).

« Explore model formulations that predict the full future wavefield di-
rectly, rather than relying on displacement history as input.

« Test formulations predicting full wavefields without displacement
history input.

« Investigate multi-scale supervision and enhanced encoding.
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